
Abstract-The interrelationship of cilia and the directional 
disorder of ciliary metachronal wave were analyzed using digital 
microscopic images. The degree of synchronization between 
ciliary beats was determined by the correlation factor between 
two different spots. Principal axes of inertia were applied to find 
out the uniphase directions of beating cilia. The standard 
deviation of wave directions in an ROI was defined as a measure 
of ciliary wave disorder (CWD). The pooled mean of CWD was 
22.9+/-8.73° in ROIs of 8µ m× 8µ m and 25.4+/-6.46° in 
32µ m× 24µ m from the sphenoid sinus mucosa of 5 normal 
subjects. Our result shows that there is a considerable variation 
in metachronal wave directions of cilia beating on the epithelium. 
Keywords - Digital microscopic images, correlation map, 
uniphase directions of cilia, principal axis of inertia, 
ciliary wave disorder (CWD). 

 
I. INTRODUCTION 

 
The main task of mucociliary systems in the respiratory 

tract is to eliminate inhaled particles by the propulsion of 
mucus. The overall propulsive effect depends upon the 
arrangement of the cilia, their metachronal relationships, as 
well as on the ciliary beat frequency (CBF) [1]. Some 
methods based on image analysis  allow the determination of 
the CBF of a single cell or multiple ciliated cells  
simultaneously [2]-[4]. Disorientation of cilia leads to an 
impairment of mucociliary transport. To determine the 
coordination of ciliary beating, variations in the orientation of 
cilia have been previously measured by examining cross-
sections of the epithelium using an electron microscope [5]. It 
has been found that ciliary disorientation may occur 
secondary to inflammation caused by infection [6] and that 
the measured orientation of cilia may vary in normal subjects 
[6]-[8]. Ciliary disorientation alone can lead to the clinical 
syndrome of primary ciliary dyskinesia (PCD) [9]. The 
directions based on observations of ciliary cross-sections may 
differ from the metachronal wave directions of cilia beating 
in media. We have applied principal axis of inertia to the 2-
dimensional correlation map calculated from sequential 
ciliary images. This method directly measures the phase 
relations and wave directions of multiple cilia beating in 
culture media. 
 

II. MATERIALS AND METHODS 
 

The mucosa in the sphenoid sinus were collected from 
subjects of no respiratory diseases with informed consent. 
The ciliary movements were recorded using a CCD camera 
from an inverted microscope. A personal computer equipped 
with an image-grabber [IC-Comp ; Imaging Technology , Inc.] 
converted VCR signals into digital images with a depth of 8 
bits. Under the magnification used, one pixel size equated to 
0.1µm. The digitized images for each processing were 
acquired at 30Hz for about 4.27 seconds (128 frames). The 

whole field of 640 by 480 pixels was divided into equal sized 
blocks (spots) of 2 by 2 pixels. Gray-level values  of all pixels 
in each spot were summed sequentially from the first frame to 
the last.  

Movements of cilia are coordinated in time and space by 
phase differences, and this is called metachronism or a 
metachronal wave [10]. The Pearson correlation factor 
between series from two different spots determined the 
degree of synchronization between ciliary beats. The 
correlation values represent the phase differences relative to 
the reference spot  exactly, if the series considered are of the 
same frequency. The maximal phase gradient is perpendicular 
to the line of synchrony or uniphase [11]. The principal axes 
of inertia were applied to determine a uniphase line of beating 
cilia with zero phase difference [12]. The principal axis of the 
minimum moment of inertia was estimated as the uniphase 
direction using correlation factors from a rectangular 
neighborhood (Eq. 1). The direction of the wave propagation 
was defined as being perpendicular to the uniphase lines [10]. 
The angles representing directions of wave propagation were 
in the range of 180°. Presuming that all the cilia in the spot 
beat in the same direction, a distribution map of directions 
was composed. To analyze the distribution of the measured 
wave directions in a specific part of a microscopic field, the 
area concerned (the region of interest or ROI) was selected as 
a rectangular window. The standard deviation describing 
variations in the directions was regarded as an overall 
measure of ciliary wave disorder (CWD) for that ROI. 
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III. RESULTS 

 
The correlation maps in Fig. 2 show the correlation values 

between ciliary signals at each spot and the reference around 
the center of an image. The pixels shown as gray levels 
represent negative correlations while the color-coded pixels 
stand for positive correlations. Color and gray stripes repeat 
in one direction. These alternating patterns in specific 
directions were discovered for most of the mucosa from the 
reference although they weakened with distance. These close 
phasic connections between ciliary beats are essential for the 
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effective propulsion of mucus by the metachronal wave of the 
cilia. The directions of uniphase lines are determined by 
correlation factors obtained from a neighborhood of 17 by 17 
pixels. The black lines at Fig. 2 represent directions of wave 
propagation, which are perpendicular to the uniphase lines. 
The maps of Fig. 3 represent visually the wave directions 
determined by correlat ion values calculated in each spot. 
Table I summarizes measurement results of ciliary wave 
disorder for 5 healthy subjects when the size of ROIs is 
8µm× 8µm and 32µm×24µm in 5 different fields. The pooled 
mean of ciliary wave disorder was 22.9+/-8.73° in ROIs of 
8µm× 8µm and 25.4+/-6.46° in 32µm×24µm. Subjects 4 and 
5, with greater local disorder in unit of cells, also showed a 
higher disorder in global behavior. The results show that 
there is a considerable variation in the metachronal wave 
directions of cilia beating on the epithelium. 

 

 
 

Fig. 1. Digitized gray images of ciliary cells beating in ROIs of 32µm×24µm 
for 2 different subjects.  

 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Correlation maps and lines representing wave directions at the 
reference spot. Wave direction of upper is 40° and lower 118° (Vertical up 
direction of the field is 0°, horizontal right 90°, and vertical down 180°). 

 
 

TABLE I 
MEASUREMENT RESULTS OF CILIARY WAVE DISORDER 

(CWD) AT 8 ROIS OF 32µM×24µM AND AT 96 ROIS OF 8µM×8µM IN 
5 DIFFERENT FIELDS FOR EACH SUBJECT. 
CWD in ROIs of 32µm×24µm 

(°) 
CWD in ROIs of 8µm×8µm 

(°) Subject 
Mean SD Mean SD 

1 18.5 2.60 15.8 4.55 

2 24.5 5.78 21.5 7.61 

3 25.6 4.87 23.6 7.30 

4 30.6 5.99 28.4 9.73 

5 30.5 3.67 28.1 6.95 
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Fig. 3. Direction maps of ciliary wave. Ciliary wave disorder of upper 
is 18.7° and lower 19.4°. (Blue color represents a wave direction of 0°, green 

90° and red 180°). 
 

 
IV. DISCUSSION AND CONCLUSION 

 
Ciliary orientation was estimated from the micrographs 

by measuring the angle between the line through two central 
tubules of cilia and a reference using an electron microscope 
[5]. The orientation of cilia in normal subjects varied with a 
disorientation of 14.6+/-3.3° in a study by De Iongh and 
Rutland [8] and 10.47+/-0.53° by Rayner et al. [6]. Our 
finding is similar to the result of Rautiainen, in which the 
disorientation was 23.8+/-6.3° in nasal samples and 29.9+/-
7.3° in sphenoid sinuses [7]. The disorientation of PCD 
patients was 38.7+/-7.8° in a study by De Iongh and Rutland 
[8] and 23.3+/-1.5° for central pairs and 23.5+/-2.5° for basal 
feet by Rayner et al [9], all of which were significantly 
greater than the normal groups. The photoelectric method 
could simultaneously measure ciliary beat frequency, phase 
shifts and correlation factors from small active ciliary areas 
[13]. However, the photoelectric method using optic fibers 
cannot provide multiple measurements of the wave direction 
simultaneously. A method capable of measuring the 
metachronal wave disorder on active ciliary epithelium in 
vivo or ex vivo has not yet been developed. We believe that 
our method can evaluate the efficacy of cilia beating on the 
epithelium more accurately. 
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